
Interfacing to ASAPX from Nonstop Java

The purpose of this document is to outline the steps involved in utilizing the ASAPX API from a Java
application running on a NonStop server. It focuses primarily on the technical mechanics of getting the
various pieces of the infrastructure in place so that Java can communicate with ASAPX. This document
does not attempt to discuss higher-level application design issues related to the use of ASAPX.

There are several steps involved in creating an interface between the Java environment and the ASAPX
API. Though none of these steps are particularly difficult or time consuming, they must all be executed in
order to successfully call ASAPX procedures from within a Java application. The steps are:

1) Install NonStop Java on your NSK server.
To do so, follow the instructions on the NonStop Java CD. Essentially this step involves uploading and
unpacking the Java executable and documentation files. For purposes of this discussion, assume that
Java is installed to the base OSS directory /usr/tandem/nssjava, referred to throughout the rest of this
document as <javadir>.

Note: Current versions of NonStop Java require hardware-based IEEE floating-point support by default.
This is only available on S72000 and later processors. If you attempt to execute a Java application on an
earlier processor, an error message will be displayed and the application will not be executed.

2) Declare ASAPX API methods in Java.
In order to call ASAPX procedures from Java, you will need to supply a C++ wrapper library as part of
your application (see step 5 below), and call into this library using the Java Native Interface. As a result,
when you write your Java code, you need to create a class that declares these wrapper library routines as
native. While you can layer abstractions on top of this class, each of these declarations needs to match,
as closely as possible, the corresponding ASAPX declaration. For example:

public static native short AsapRegister(String DomainName,
 short DomainNameLen,
 int[] SegOffset,
 short[] ErrorDetail,
 short SegmentID,
 int SegmentBase,
 short Version,
 String AsapID,
 short AsapIDLen,
 short Flags,
 int Timeout);

public static native short AsapUpdate (int SegOffset,
 short[] ErrorDetail,
 short DataItem,
 long Value,
 short Math);
etc.

Note that you will also need to call the System.loadLibrary method during the static initialization of this
class in order to load your wrapper library (created in Step 8 below). For example:

System.loadLibrary("MyArchive")

3) Compile your Java application.
Use the OSS javac utility to compile your application. For example, if your Java source code is contained
in the file MyApp.java, the command would be:

javac MyApp.java

If the application compiles cleanly, a .class file will be created with the same name as the Java source file
(e.g. in this case it would be MyApp.class).

4) Generate a C++ header file from the Java class.
As part of developing an ASAPX wrapper library in C++, you must create a C++ header file (i.e. a .h file)
that contains the declarations of all the native methods you specified in your Java application. While you
could attempt to write these declarations by hand, it is far easier (and safer) to use the OSS javah utility.
To generate a C++ header file for the example above, you would enter:

javah –jni MyApp

The javah utility will open the MyApp.class file, extract all native method declarations from it, and
generate the corresponding C++ header file (in this case named MyApp.h).

It is important that you use javah to generate the header file, rather than create it manually, for the
following reasons:

• The names of your wrapper library methods will not be the same as the method names declared

native in your Java source. The wrapper library method names are derived from these declarations,
but will not match exactly. There are several rules used by the JVM in determining the actual method
name to be called, but in general the alteration will consist of prefixing the declared method name
with the keyword Java_, followed by the name of the class that contains the method. For example,
assume that you have a Java class named MyClass, and declare a native method AsapRegister as
follows:

public class MyClass
{
 public static native short AsapRegister(<remaining declaration>…)
}

The actual native method the JVM will call in this case is Java_MyClass_AsapRegister, not simply
AsapRegister.

The javah utility is aware of JVM native method naming rules and will generate the correct method
names that the JVM will expect to find.

• There are type differences between Java and C++. The javah utility ensures that the C++ methods

are declared with the correct parameter types for the version of Java running on your system (i.e.
javah makes sure the C++ method is declared correctly to receive the data it’s actually going to be
passed).

• The JVM adds extra parameters to each method call beyond what is specified in the formal Java

method declaration. This can include a pointer to the JVM environment, as well as a pointer to the
current Java object. Because the number or types of these additional parameters could change at
some point, javah should be used to ensure compatibility.

5) Implement the C++ library methods declared above.
This step involves writing the C++ wrapper library methods that were initially declared as native in your
Java source code, and for which declarations were generated above using javah.

Your C++ source code will need to include the header file you created in step 4; for example:

#include “MyApp.h”

You will also need to include the ASAPX header file asapx.h:

#include <asapx.h>

You then need to supply the body for each of these methods. Essentially the goal of each will be the
same: to take the information passed in from Java, call the corresponding ASAPX library method, and
return the results back to Java. You can obviously also add any additional features here that you feel are
useful.

A few key points to keep in mind:

• When you call the actual ASAPX library methods (e.g. ASAP_REGISTER_), you are calling into a

native NSK library. Thus you should have a general understanding of NSK libraries themselves, the
NSK memory model, etc.

• Most of the ASAPX library methods contain output parameters, in addition to returning a value.

These output parameters must be communicated back to the Java application, and doing so will
require that your C++ library code utilize the JVM environment pointer parameter supplied when Java
initially called your C++ method. The JVM environment pointer will allow your C++ library code to
access and update objects within the Java run time environment, which is the only mechanism
available to communicate output parameters back to the Java method that initiated the call.

6) Compile the C++ library source.
Use the OSS c89 utility for this step, and be sure to specify the –cg, -Wversion2, and -Wextensions flags.
–cg causes the file to be compiled and not linked, and includes symbolic debugging information. The –
Wversion2 flag enables use of all current C++ features, some of which are required for JNI. The -
Wextensions flag enables HP-specific C++ language extensions; these are required for interfacing to
ASAPX and are used in the asapx.h header file. For example, if your C++ source file name is
MyApp.cpp, you would use the following command to compile it:

c89 –cg –Wversion2 –Wextensions MyApp.cpp

If the source file compiles cleanly, a .o object file will be created (e.g. in this case, MyApp.o).

7) Link your object library with the ASAPX object library.
At this stage, you have written all of the necessary code to make it possible to call ASAPX from Java.
However, you now need to create the correct library files so that the JVM can find the C++ wrapper
method and actual ASAPX library routines at run time. The first step in this process is to create a re-
linkable native NSK library that contains both your wrapper library and the ASAPX library asapxsro. To
do so, use the OSS nld utility. For example, if your library object file is named MyApp.o, the command to
create a new library named Combined.o which contains both your library and the ASAPX library would
be:

nld MyApp.o asapxsro –r –o Combined.o

The –r flag causes nld to create a re-linkable library rather than an executable object file, which is what
the JVM build process requires.

8) Create a library archive file of your re-linkable library.
In order for the JVM to call your library at run time, that library must be linked to the Java executable. The
build process that accomplishes this (referenced in step 11) expects your library to be contained in an
archive. To create this archive, use the OSS ar utility with the –rcv flags. For example, if the library file
containing a combination of your C++ wrapper library and the ASAPX library file is named Combined.o,
the command would be:

ar -rcv MyArchive.a Combined.o

This would create the library archive file MyArchive.a. The –rcv flags to ar cause a new archive file to be
created if necessary, suppress output of a message stating that the file has been created, and displays
the name of each file added to the archive (which in this case would be limited to Combined.o).

9) Move the library archive file to the <javadir>/lib directory.
The build process for the JVM will automatically link any library archives contained in the <javadir>/lib
directory into the JVM; thus you need to copy the library archive created in step 8 to this directory. For
example:

cp MyArchive.a <javadir>/lib

Note: You may need root (SUPER.SUPER) authority in order to copy a file to the <javadir>/lib directory.

10) Save a copy of your existing Java Virtual Machine (Java executable).
This is located in the <javadir>/bin/oss/posix_threads directory. Copy the file java to another location; you
can fall back to this in the event the rebuild fails.

Note: You may need root (SUPER.SUPER) authority in order to copy the Java executable.

11) Rebuild the Java Virtual Machine.
Now that everything is prepared, you need to rebuild the Java Virtual Machine to link in the library archive
you created. To do so, go to the <javadir>/install directory. Then enter the command make. This will
cause the Java Virtual Machine to be rebuilt, and it will contain your library archive.

Note: You may need root (SUPER.SUPER) authority in order to rebuild the JVM.

12) Turn on the RUNNAMED attribute of the new JVM.
In order to utilize the ASAPX API, your application’s Java process must have a name. By default, the
java executable does not run with a process name. You must enable this option using the OSS nld utility.
To do so, go to the <javadir>/bin/oss/posix_threads directory, and enter:

nld -change RUNNAMED ON java

You are now able to execute your Java application and interface to ASAPX.

Note: You may need root (SUPER.SUPER) authority in order to turn on the RUNNAMED attribute of the
new JVM.

Ongoing Maintenance:

If you subsequently make any changes to the native declarations in your Java application, you will need
to re-execute this sequence of steps beginning with step 2.

If you do not make changes in your Java application, but wish to update your C++ wrapper library, you
will need to re-execute this sequence of steps beginning with step 5.

