Creating a CSG/OLE Client Using Microsoft Visual C++ 4.0

The procedure for developing a CSG/OLE client using MSVC 4.0 is relatively straightforward. The basic requirements are essentially the same as those for VB 4.0, or for any other OLE-enabled language or tool:

Create an instance of the CSG OLE Interface class(es) exposed by the CSG proxy (CSGDLL.DLL)

Define a callback/reply class, and create an instance of it (if using nowait operations)

Call CSG/OLE methods

Process CSG/OLE responses (if using nowait operations)

The specific steps for MSVC 4.0 and Microsoft Foundation Classes (MFC) 4.0 are detailed below. Note that the requirements and procedures for this environment differ from prior releases of MSVC and/or MFC, and also differ from the requirements of other tools (e.g. Borland C++, etc.). If a tool other than MSVC 4.0/MFC 4.0 will be used, consult that tool’s documentation in order to determine how to interact with an OLE-Automation server and how to implement a callback class.

Steps for Creating an MSVC 4.0 Client

Create a new project using MSVC 4.0

From the MSVC File menu, select New...Project Workspace, and choose the type of client application to build. If MFC AppWizard is used, be sure to select “OLE Automation” when prompted during the initial creation dialogs. Note that if a document-based application is created, AppWizard will prompt for the type of OLE compound document support to be included. This setting has no impact on the use of the CSG/OLE Interface proxy server or the use of the client callback class. Therefore select “None” unless the application will act as a server or container for other client applications.

Generate class definition(s) for CSG/OLE Interface classes

The CSG/OLE Interface exposes the following classes:

_CSGClass

This class provides the main interface to CSG/OLE services. Available methods include StartSession, EndSession, SSGSend, SSGSendWait, SSGSendPrivate, SSGSendPrivateWait, SSGSendShare, SSGSendShareWait, SSGSendListdev, SSGSendListdevWait, SSGSendStatus, SSGSendStatusWait, SRVSend, SRVSendWait, CSGSend, and CSGSendWait. A definition for this class must be generated, and an instance of it declared, in order to utilize CSG services.

_CSGStatsClass

This class provides statistics on the number of requests of each type sent by the client, and the number of responses received. It also reports any error information and displays request history. Available methods are ShowStats and ResetStats. A definition for this class must be generated, and an instance of it declared if the client application wishes to display interface statistics. This may be particularly useful during development for debugging purposes. If the client does not need to display these statistics the it is not necessary to generate a definition for this class.

CSGInternalReplyClass

This class is for internal CSG use only; no definition should be generated for it, nor should any client attempt to use it.

CallbackTemplateClass

This class is meant to serve as a reference and template for the callback class definition. The various callback methods and parameters can be viewed using a class browser or OLE viewer. It cannot be used directly by any client application, and no definition should be generated for it.

To generate definitions for _CSGClass and optionally _CSGStatsClass, proceed as follows:

Select "Add Class..." from the ClassWizard

Choose "From an OLE Type Lib..."

Select the file CSGDLL.DLL in the CSG directory. Note that no separate type library file (.TLB) is provided; the DLL serves as the type library.

Select _CSGClass, and optionally _CSGStatsClass if the client application will display interface stats. Definitions do not need to be generated for any other class.

Enter the header (.h) and implementation (.cpp) file names for the class definition(s), and click OK.

The definition files will be created automatically by ClassWizard.

Develop a class definition for the client callback/reply class

This step is necessary if the client application will use the various nowaited CSG/OLE methods (e.g. SSGSendPrivate, SSGSendShare, etc.). The CSG/OLE Interface proxy will “callback” to the reply object with response data. In order to do so, the callback class must declare methods with well-known names and the correct number and types of parameters. There is basically one reply method for each request type. For example, if the client application utilizes the CSG/OLE method SSGSendPrivate, then the callback class must have a declaration for SSGReplyPrivate; if the client calls SRVSend, then the callback class must have a declaration for SRVReply, etc. The reply methods and parameters are listed in the next section.

To build the reply class definition, proceed as follows:

Select "Add Class..." from the ClassWizard

Choose "New..."

Enter a name for the reply class. This name is not utilized outside of the application, so there are no naming restrictions or guidelines.

Select CCmdTarget or a class derived from it as the base class; this allows the object to be “called back” via OLE Automation.

Set "OLE Automation" to "Automation"

Click “Create”

Click on the “OLE Automation” tab in ClassWizard

Click on “Add Method” and add the names, parameters, and return types of all methods the callback class will utilize.

ClassWizard will build and update the header (.h) and implementation (.cpp) files for the class. All necessary response processing can then be added to the various callback methods in the .cpp file. Note also that the callback class is not limited to only those methods that may be utilized by the CSG/OLE Interface proxy server; it can also contain other properties and methods that are completely unrelated to the CSG.

Create instance(s) of CSG/OLE Interface classes

Instances of the CSG/OLE Interface classes are created by declaring them, for example:

 _CSGClass CSGObject;

 _CSGStatsClass CSGStatsObject;

Create an instance of the client callback/reply class

Instances of the callback/reply class are created by declaring them, for example:

 MyReplyClass MyReplyObject;

Attach to or create the CSG/OLE Interface proxy server

In order to call CSG/OLE Interface methods, the CSG/OLE Interface proxy server must be running. The client application attaches to this server by getting a dispatch pointer to it; this pointer is then utilized when calling CSG/OLE Interface methods. If a server is already running, the client can simply attach to it; if the server is not already running, the client must create one. The procedure for creating and/or attaching to a server is as follows:

Get the Class ID for the CSG/OLE Interface class to be used. This information is stored in the system registry by registered class name. Note that the registered class names for CSG/OLE Interface classes are different than those displayed in ClassWizard. The registered class name for the main CSG/OLE interface (i.e. _CSGClass) is “CSGDLL.CSGClass”. The registered class name for the CSG/OLE statistics class (i.e. _CSGStatsClass) is “CSGDLL.CSGStatsClass”. The client application can then call the CLSIDFromString routine using these names to retrieve the class ID for the given class from the registry. For example, to get the class ID for _CSGClass:

 CLSID thisclsid;

 // Get Class ID from registry; CSG OLE Interface class name is

 // "CSGDLL.CSGClass"

 if (CLSIDFromString(OLESTR("CSGDLL.CSGClass"), &thisclsid) != NOERROR)

 {

 AfxMessageBox(IDP_UNABLE_TO_CREATE);

 AfxThrowUserException();

 }

To get the class ID for _CSGStatsClass, use the same procedure as above, but substitute “CSGDLL.CSGStatsClass” for “CSGDLL.CSGClass” in the CLSIDFromString call.

Try to find an existing server. This is done by calling GetActiveObject using the class ID obtained above. For example:

	LPUNKNOWN lpUnk;

	LPDISPATCH lpDispatch;

	// Try to get the active object before creating a new one

	if (GetActiveObject(thisclsid, NULL, &lpUnk) == NOERROR)

	 { ...

If a server was found, attach to it. This is done by first calling QueryInterface on the object retrieved via GetActiveObject in order to get a dispatch pointer to it. Then call the _CSGClass or _CSGStatsClass AttachDispatch method to “attach” this pointer to the _CSGClass or _CSGStatsClass instance. (Note that AttachDispatch mechanism is available as a result of the fact that both _CSGClass and _CSGStatsClass were derived from the MFC base class COLEDispatchDriver; the client does not need to do anything to explicitly enable this functionality.) For example, to attach a server for the _CSGClass object CSGObject:

 // This code is continued from above

	 HRESULT hr = lpUnk->QueryInterface(IID_IDispatch, (LPVOID*)&lpDispatch);

 lpUnk->Release();

 if (hr == NOERROR)

	 CSGObject.AttachDispatch(lpDispatch, TRUE); // Have dispatch pointer

	 }

To attach a server for the _CSGStatsClass object CSGStatsObject, substitute CSGStatsObject for CSGObject above when calling the AttachDispatch method..

If a server was not found, create one. This is done by calling the _CSGClass or _CSGStatsClass CreateDispatch method, passing the class ID for the class. This will cause the server to be started and attached to the client application’s _CSGClass or _CSGStatsClass instance. For example, to create a server for the CSGClass object CSGObject:

 // If no dispatch ptr attached yet, need to create one

 // CreateDispatch gives us dispatch pointer

 if (CSGObject.m_lpDispatch == NULL) &&

 (!CSGObject.CreateDispatch(thisclsid, &e))

 {

 AfxMessageBox(IDP_UNABLE_TO_CREATE);

 AfxThrowUserException();

 }

To create a server for the _CSGStatsClass object CSGStatsObject, substitute CSGStatsObject for CSGObject above.

At this point the CSG/OLE Interface proxy server should be running, and the _CSGClass and _CSGStatsClass instances will be attached to it. You can then begin calling the various _CSGClass and _CSGStats class methods.

Call CSG/OLE Interface methods

The process of calling CSG/OLE methods is no different than calling any other object’s methods. The standard syntax of <object>.<method> applies.

When calling a nowaited CSG/OLE Interface method, the first parameter passed is a dispatch pointer to the callback/reply object to which the response should be sent. The other parameters vary depending on the call being made, and all responses are handled via the callback object. When calling a waited CSG/OLE Interface method, no reply object is necessary. The other parameters vary by call type, and both request and response parameters are specified in the request. The call completes when a response is received from the CSG, and all response data is returned in the original parameters. See the next section for a description of CSG/OLE Interface methods and parameters.

For example, to call the _CSGClass CSGSend method:

// Call CSGSend method. Parameters are a pointer to the reply object, a pointer

// to the client name (string), a pointer to the request (string), a pointer to

// the CSG Name (variant), and a pointer to the client context (variant). Return // type is short.

short ReturnCode;

LPDISPATCH ReplyDispatch;

BSTR ClientName;

BSTR Request;

VARIANTARG CSGName;

VARIANTARG ClientContext;

// ... <other code>

// Get dispatch pointer to our reply object (i.e. MyReplyObject, which is an

// instance of MyReplyClass defined earlier).

ReplyDispatch = MyReplyObject.GetIDispatch(FALSE);

ReturnCode = CSGObject.CSGSend(&ReplyDispatch, &ClientName, &Request,

 &CSGName, &ClientContext);

The same general mechanism applies to all other _CSGClass and _CSGStatsClass methods. Note that since this is a nowaited call, the first parameter passed in the example above is a dispatch pointer to the client’s reply object. This was obtained using the object’s GetIDispatch method, which returns a dispatch handle for the OLE Automation-enabled object. The GetIDispatch functionality is inherited from the CCmdTarget base class, from which the reply class was derived. No additional code is necessary in the client to utilize this mechanism.

Process CSG/OLE responses

This step is necessary if the client application utilizes any of the nowaited CSG/OLE Interface methods. Response data from the CSG is returned to the client application via the callback object specified when the request was made. There is a one-to-one mapping between nowaited requests and callback responses:

Request Method�
Response Method�
�
CSGSend�
CSGReply�
�
SRVSend�
SRVReply�
�
SSGSend�
SSGReply�
�
SSGSendListdev�
SSGReplyListdev�
�
SSGSendPrivate�
SSGReplyPrivate�
�
SSGSendShare�
SSGReplyShare�
�
SSGSendStatus�
SSGReplyStatus�
�

For example, if the client application calls SSGSendListdev, the response will be returned in SSGReplyListdev, etc. It is only necessary to declare callback methods that will actually be utilized by the given client application. If the client does not make a specific type of request, there is no need to implement a callback method to handle the response. For example, if the client application never calls SSGSendStatus, there is no need to create an SSGReplyStatus callback method.

The actual processing that takes place in these routines is dictated solely by the needs of the client application; there are no specific requirements imposed by the CSG/OLE Interface. Note that the callback/reply class is only used to respond to nowait requests; it is not needed for waited requests.

CSG/OLE Interface Request and Response Methods

This section lists the methods and parameters for the _CSGClass, _CSGStatsClass, and callback/reply classes. For a detailed description of the purpose and usage of each method or parameter, see the API Overview section of this document.

_CSGClass Methods and Parameters

The methods provided by the _CSGClass class serve as the main interface to CSG/OLE services. All _CSGClass method parameters are passed by reference, and are one of four types:

LPDISPATCH*�
A pointer to a dispatch pointer. Parameters of this type are used exclusively on nowait calls, to pass the reply object’s dispatch pointer. The dispatch pointer can be obtained using the GetIDispatch method of the reply object.�
�
BSTR*�
A pointer to a 32-bit pointer to a Unicode string. Parameters of this type are used to pass strings.�
�
VARIANT*�
A pointer to a VARIANT structure. Parameters of this type are used to pass variant data. This is required due to the fact that the CSG/OLE Interface supports optional parameters for VB 4.0, which are required to be VARIANT. For details on the VARIANT structure, see the MSVC documentation.�
�
short*�
A pointer to a 16-bit integer value.�
�

Note that VARIANT parameter handling is slightly more complex than the handling of other parameters. The client application must initialize each VARIANTARG structure prior to using it. The vt field must then be set to indicate the type of value being passed, and the address of the actual value must be stored in one of the structure’s pointer fields. Also, since all strings passed must be of type BSTR, passing variant string values requires the additional step of allocating a BSTR for each C/ANSI string. For example, the following would be required to pass the C/ANSI string “This is client context” in the ClientContext parameter on any call of a _CSGClass method:

VARIANTARG MyClientContext;

BSTR MyBSTR;

short ReturnCode;

// First allocate a BSTR from the C/ANSI string. Note that OLESTR is used

// to get a Unicode string, and SysAllocString is used to allocate the BSTR.

MyBSTR = SysAllocString(OLESTR(“This is client context”));

// Now build VARIANTARG

VariantInit(&MyClientContext); // Inits structure

MyClientContext.vt = VT_BYREF|VT_BSTR; // Variant is a string passed by reference

MyClientContext.pbstrVal = &MyBSTR; // Set pointer to BSTR

// At this point, MyClientContext could be passed to a CSG/OLE Interface method...

ReturnCode = CSGObject.CSGSend(&ReplyDispatch, &ClientName, &Request,

 &CSGName, &MyClientContext);

The same procedure would be used for any other variant string value. For other variant types (long, short, etc.), the vt field would be set to correspond to the type of value being passed (VT_I4, VT_I2, ...), and a different pointer field used (plVal, piVal, ...).

Each _CSGClass method uses a subset of the following parameters:

Parameter Name�
Type�
Implementation Details�
�
AgeGen�
VARIANT*�
The variant value is a string (BSTR); vt = VT_BYREF | VT _BSTR, and pbstrVal = the address of the BSTR containing the AgeGen string..�
�
CacheIndex�
VARIANT*�
The variant value is a string (BSTR); vt = VT_BYREF | VT _BSTR, and pbstrVal = the address of the BSTR containing the CacheIndex string.�
�
CI�
BSTR*�
The BSTR contains the address of the CI string.�
�
ClientContext�
VARIANT*�
The variant value is a string (BSTR); vt = VT_BYREF | VT _BSTR, and pbstrVal = the address of the BSTR containing the ClientContext string.�
�
ClientObject�
LPDISPATCH*�
This is the dispatch pointer to the reply object. Used for nowait calls only.�
�
ClientName�
BSTR*�
The BSTR contains the address of the ClientName string.�
�
CSGName�
VARIANT*�
The variant value is a string (BSTR); vt = VT_BYREF | VT _BSTR, and pbstrVal = the address of the BSTR containing the CSGName string.�
�
Pathmon�
VARIANT*�
The variant value is a string (BSTR); vt = VT_BYREF | VT _BSTR, and pbstrVal = the address of the BSTR containing the Pathmon string.�
�
ReplayKey�
VARIANT*�
The variant value is a string (BSTR); vt = VT_BYREF | VT _BSTR, and pbstrVal = the address of the BSTR containing the ReplayKey string.�
�
Request�
BSTR*�
The BSTR contains the address of the Request string.�
�
Server�
VARIANT*�
The variant value is a string (BSTR); vt = VT_BYREF | VT _BSTR, and pbstrVal = the address of the BSTR containing the Server string.�
�
Status�
short*�
This will contain the address of the return status. Used for waited calls only.�
�
SubStatus�
short*�
This will contain the address of the return substatus. Used for waited calls only.�
�
Tag�
VARIANT*�
The variant value is a string (BSTR); vt = VT_BYREF | VT _BSTR, and pbstrVal = the address of the BSTR containing the Tag string.�
�
Term�
VARIANT*�
The variant value is a string (BSTR); vt = VT_BYREF | VT _BSTR, and pbstrVal = the address of the BSTR containing the Term string.�
�
Timeout�
VARIANT*�
The variant value is a long; vt = VT_BYREF | VT_I4, and plVal = the address of the long containing the timeout value. Used for waited calls only.�
�

The return type for each method is short.

The currently supported methods are:

CSGSend

short CSGSend (LPDISPATCH* ClientObject,

 BSTR* ClientName,

 BSTR* Request,

 VARIANT* CSGName,

 VARIANT* ClientContext);

CSGSendWait

short CSGSendWait (short* Status,

 short* SubStatus,

 BSTR* ClientName,

 BSTR* Request,

 VARIANT* CSGName,

 VARIANT* ClientContext,

 VARIANT* Timeout);

EndSession

short EndSession (short* SubStatus,

 VARIANT* CSGName);

SRVSend

short SRVSend (LPDISPATCH* ClientObject,

 BSTR* ClientName,

 BSTR* Request,

 VARIANT* CSGName,

 VARIANT* ReplayKey,

 VARIANT* Pathmon,

 VARIANT* Server,

 VARIANT* ClientContext);

SRVSendWait

short SRVSendWait (short* Status,

 short* SubStatus,

 BSTR* ClientName,

 BSTR* Request,

 VARIANT* CSGName,

 VARIANT* ReplayKey,

 VARIANT* Pathmon,

 VARIANT* Server,

 VARIANT* ClientContext,

 VARIANT* Timeout);

SSGSend

short SSGSend (LPDISPATCH* ClientObject,

 BSTR* ClientName,

 BSTR* Request,

 VARIANT* CSGName,

 VARIANT* ReplayKey,

 VARIANT* Pathmon,

 VARIANT* Server,

 VARIANT* ClientContext);

SSGSendWait

short SSGSendWait (short* Status,

 short* SubStatus,

 BSTR* ClientName,

 BSTR* Request,

 VARIANT* CSGName,

 VARIANT* ReplayKey,

 VARIANT* Pathmon,

 VARIANT* Server,

 VARIANT* ClientContext,

 VARIANT* Timeout);

SSGSendListdev

short SSGSendListdev (LPDISPATCH* ClientObject,

 BSTR* ClientName,

 BSTR* Request,

 VARIANT* CSGName,

 VARIANT* CacheIndex,

 VARIANT* Tag,

 VARIANT* Term,

 VARIANT* ReplayKey,

 VARIANT* Pathmon,

 VARIANT* Server,

 VARIANT* ClientContext);

SSGSendListdevWait

short SSGSendListdevWait(short* Status,

 short* SubStatus,

 BSTR* ClientName,

 BSTR* Request,

 VARIANT* CSGName,

 VARIANT* CacheIndex,

 VARIANT* Tag,

 VARIANT* Term,

 VARIANT* ReplayKey,

 VARIANT* Pathmon,

 VARIANT* Server,

 VARIANT* ClientContext,

		 VARIANT* Timeout);

SSGSendPrivate

short SSGSendPrivate (LPDISPATCH* ClientObject,

 BSTR* ClientName,

 BSTR* CI,

 BSTR* Request,

 VARIANT* CSGName,

 VARIANT* CacheIndex,

 VARIANT* Tag,

 VARIANT* Term,

 VARIANT* ReplayKey,

 VARIANT* Pathmon,

 VARIANT* Server,

 VARIANT* ClientContext);

SSGSendPrivateWait

short SSGSendPrivateWait(short* Status,

 short* SubStatus,

 BSTR* ClientName,

 BSTR* CI,

 BSTR* Request,

 VARIANT* CSGName,

 VARIANT* CacheIndex,

 VARIANT* Tag,

 VARIANT* Term,

 VARIANT* ReplayKey,

 VARIANT* Pathmon,

 VARIANT* Server,

		 VARIANT* ClientContext,

 VARIANT* Timeout);

SSGSendShare

short SSGSendShare (LPDISPATCH* ClientObject,

 BSTR* ClientName,

 BSTR* CI,

 BSTR* Request,

 VARIANT* CSGName,

 VARIANT* AgeGen,

 VARIANT* CacheIndex,

 VARIANT* Tag,

 VARIANT* Term,

 VARIANT* ReplayKey,

 VARIANT* Pathmon,

 VARIANT* Server,

		 VARIANT* ClientContext);

SSGSendShareWait

short SSGSendShareWait (short*
